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• Question : How do we obtain candidate action/object categories?

• The same word can have different meanings.

• Wordnet ― verb and noun synsets

• For noun synsets, we use 20 objects classes from PASCAL VOC

• Problem : connecting verb and noun synsets

draw 1: represent by making a drawing of, as with a pencil, chalk, etc. on a surface

2 : take liquid out of a container or well

Draw me a horse.

She drew water from the barrel

{wash, launder}
{capture, catch}
{draw, take out}
{switch off, cut, turn off, turn out}

{fly, aviate, pilot} {airplane}
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• We introduce the problem of mining the 
    knowledge of semantic affordance: 
    given an action and an object, determine 
    whether the action can be applied to the 
    object.

• Why useful?
    1. It gives a list of valid action-object pairs, 
        the basis for creating a large-scale 
        image/video dataset to train and evaluate action recognition algorithms.
    2. Affordance knowledge can be used as a common sense prior for generat-

ing natural language descriptions from images or videos.

•  Contributions
    1. Introduce the new problem of mining semantic affordances.
    2. A benchmark dataset for affordance modeling that contains the complete 

ground truth for all 20 PASCAL VOC categories on 957 verb synsets.  
    3. Explore and analyze a variety of approaches and present a number of sig-

nificant insights.

• Selecting verb synsets ― Wordnet has 13,767 verb synsets. We are interested 
in the verb synsets that are both common and visual.

• Crowdsourcing semantic affordances
       

1. Common : Google Syntactic N-grams dataset
drive   drive/VB/ROOT/0 car/NN/ dobj/1   21733

2. Visual : Crowdsourcing using Amazon Mechanical Turk (AMT)
5. align
    definition: place in a line or arrange so as to be parallel or straight
    synonyms: align aline line_up adjust
    example: align the car with the curb

Is it possible to tell whether someone is "align -ing" something by looking at an 
image or watching a video clip without sound?

20 noun synsets × ~1000 verb synsets × 5 Turkers ≈ 100K questions

1. load
    definition: fill or place a load on
    synonyms: load lade laden load_up
    example: load a car

Is it possible to load (fill or place a load on) a car?

Visualness Synset Synonyms Definition

Definitely yes {wash, launder} Cleanse with a cleaning agent, such as soap, and water.
{drive} Operate or control a vehicle.

Yes {deliver} Bring to a destination, make a delivery.
{switch,off cut, turn off, turn out} Cause to stop operating by disengaging a switch.

Maybe {enjoy} Have for one’s benefit.
{allow, grant} Let have.

No
{develop, acquire, evolve} Gain through experience.
{drive} Compel somebody to do something, often against his

own will or judgment.
Definitely no {wish} Make or express a wish.

or {come} Come to pass, arrive, as in due course.
Make no sense {decline, go down, wane} Grow smaller.

Plausibility Action Object
Synset Synonyms Definition Synset Synonyms

Definitely yes {race, run} Compete in a race. {car, auto, automobile,
machine, motorcar}

Yes {turn} Cause to move around or rotate. {sofa, couch, lounge}

Maybe {compress, constrict, squeeze, Squeeze or press together. {bottle}
compact, contract, press}

No {capture, catch} Capture as if by hunting, snaring {chair}
or trapping.

Definitely no {wear, bear} Have on one’s person. {airplane, aeroplane, plane}
or {cultivate, crop, work} Prepare for crops. {person, individual, someone

Make no sense somebody, mortal, soul}
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• Question : To what extent can we automatically extract semantic affordances?

• Binary classification problem (using crowdsourced ground truth)
 1. Mining from texts ― co-occurrence information of verbs and nouns

      (a) Google N-grams                          (b) LSA                                (c) Word2Vec

2. Mining from images
    - Query verb-noun pairs in Google Image Search
    - Measure visual consistency by SVM cross validation accuracy 

3. Collaborative filtering 
    - User vs. movie               object vs. action 
    - Predict if an object “likes” an action
    - Kernelized Probabilistic Matrix Factorization (KPMF)
    - Leave-one-class-out prediction

   wear + bicycle, 90.00 %        wash + bicycle, 63.50 %
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mAP
Random 25.2
G N-Grams 40.7
LSA 28.5
Word2Vec 28.5
V Consistency 29.7

LR 35.2
KPMF 63.7

Google N-Gram Action Object
Synset Synonyms Definition Synset Synonyms

True positives
{draw} Represent by making a drawing of, {person, individual, someone,

as with a pencil, chalk, etc. somebody, mortal, soul}
on a surface.

{pass, hand, reach, Place into the hands or custody of. {bottle}
pass on, turn over, give}

False positives
{draw, take out} Take liquid out of a container or {person, individual, someone,

well. somebody, mortal, soul}
{pass,go through,go across} Go across or through. {bottle}

False negatives
{photograph, snap, shoot} Record on photographic film. {airplane, aeroplane, plane}

{award, present} Give, especially as an honor or {person, individual, someone,
reward. somebody, mortal, soul}


